- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Chai, Tianyou (4)
-
Gao, Weinan (2)
-
Lewis, Frank L. (2)
-
Abad, Alexandra (1)
-
Davari, Masoud (1)
-
Jiang, Yi (1)
-
Jiang, Zhong-Ping (1)
-
Kirk, Daniel R. (1)
-
Kiumarsi, Bahare (1)
-
Lian, Bosen (1)
-
Liu, Mushuang (1)
-
Lu, Xinglong (1)
-
Qasem, Omar (1)
-
Setter, Tina (1)
-
Short, Dunham (1)
-
Wan, Yan (1)
-
Zhang, Ya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this article, a new framework for the resilient control of continuous-time linear systems under denial-of-service (DoS) attacks and system uncertainty is presented. Integrating techniques from reinforcement learning and output regulation theory, it is shown that resilient optimal controllers can be learned directly from real-time state and input data collected from the systems subjected to attacks. Sufficient conditions are given under which the closed-loop system remains stable given any upper bound of DoS attack duration. Simulation results are used to demonstrate the efficacy of the proposed learning-based framework for resilient control under DoS attacks and model uncertainty.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Qasem, Omar; Davari, Masoud; Gao, Weinan; Kirk, Daniel R.; Chai, Tianyou (, IEEE Transactions on Industrial Electronics)
-
Lu, Xinglong; Kiumarsi, Bahare; Chai, Tianyou; Jiang, Yi; Lewis, Frank L. (, IEEE Transactions on Industrial Informatics)
-
Lian, Bosen; Wan, Yan; Zhang, Ya; Liu, Mushuang; Lewis, Frank L.; Abad, Alexandra; Setter, Tina; Short, Dunham; Chai, Tianyou (, Proceedings of IEEE Conference on Decision and Control)
An official website of the United States government
